Détails Publication
REMOVABLE SETS FOR THE WAVE EQUATIONS IN TERMS OF HAUSDORFF MEASURE,
Discipline: Mathématiques
Auteur(s): I.LY, M. OUEDRAOGO, B. BELLA and T.OUEDRAOGO
Auteur(s) tagués:
Renseignée par : LY Ibrahim
Résumé

We prove a Radó theorem for the wave equations. Namely, we
consider u to be a locally Lipschitz continuous function on an
open set X of R^{n+1} and weakly solution to the wave equations ∂ttu -div(∇u)=0
away from the zero set away from the zero set u^{-1}(0) in X. We prove
that u is a weak solution to these wave equations in all of X .

Mots-clés

hyperbolic equations, removable sets, Hausdorff measure.

935
Enseignants
7553
Publications
49
Laboratoires
101
Projets