Détails Publication
Physicochemical and Mineralogical Characterizations of Two Natural Laterites from Burkina Faso: Assessing Their Potential Usage as Adsorbent Materials,
Discipline: Chimie
Auteur(s): Corneille Bakouan, Louise Chenoy, Boubié Guel, and Anne-Lise Hantson
Auteur(s) tagués: GUEL Boubié
Renseignée par : GUEL Boubié
Résumé

In the framework of lateritic material valorization, we demonstrated how the geological environment determines the mineralogical characterizations of two laterite samples,
KN and LA. KN and LA originate from the Birimian and Precambrian environments, respectively. We showed that the geological criterion alone does not determine the applicability of these laterites as potential adsorbents but must be associated with their physicochemical properties. The characterizations were carried out using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermal analysis, and Atomic Emission Spectrometry Coupled with an Inductive Plasma Source. The major mineral phases obtained by X-ray diffraction analysis coupled with infrared analysis showed that the KN and LA laterite samples were composed of quartz (33.58% to 45.77%), kaolinite (35.64% to 17.05%), hematite (13.36% to 11.43%), and goethite (7.44% to 6.31%). The anionic exchange capacity of the KN and LA laterites ranged from 86.50 ± 3.40 to 73.91 ± 9.94 cmol(-)·kg−1 and from 73.59 ± 3.02 to 64.56 ± 4.08 cmol(-)·kg−1, respectively, and the cation exchange capacity values are in the order of 52.3 ± 2.3 and 58.7 ± 3.4 cmol(+)/Kg for the KN and LA samples, respectively. The specific surface values determined by the BET method were 58.65 m2/g and 41.15 m2/g for the KN and LA samples, respectively. The effects of adsorbent doses on As(III,V), Pb(II), and Cu(II) adsorption were studied. At 5 mg/L As and 15 g/L adsorbent (pH 6.5–7), arsenate removal was 99.72 ± 0.35% and 99.58 ± 0.45% for KN and LA, respectively, whereas arsenite removal reached 83.52 ± 2.21% and 98.59 ± 0.64% for LA and KN, respectively. The Pb(II) and Cu(II) removal rates were 74.20 ± 0.95% for 2.4 g/L KN and 54.18 ± 0.01% for 8 g/L KN, respectively. Based on their physicochemical and mineralogical characteristics, the KN and LA laterite samples were shown to possess a high potential as adsorbent material candidates for removing heavy metals and/or anionic species from groundwater.

Mots-clés

natural laterites; sorption properties; mineralogy; anionic exchange capacity

936
Enseignants
7719
Publications
49
Laboratoires
101
Projets