Détails Publication
NEUMANN PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONSINVOLVING VARIABLE EXPONENT AND MEASURE DATA,
Discipline: Mathématiques
Auteur(s): Mohamed Badr Benboubker, Stanislas Ouaro, Urbain Traore
Auteur(s) tagués:
OUARO Stanislas
Renseignée par : TRAORÉ Urbain
Résumé
This paper deals with the question of the existence of entropy solutions for the problem− div(a(x, u, ∇u) + φ(u)) + g(x, u, ∇u) = µ posed in an open bounded subset Ω of R^N with the homogeneous Neumann boundary condition (a(x, u, ∇u) + φ(u)) · η = 0. The functional setting involves Lebesgue and Sobolev spaces with variable exponent
Mots-clés
Nonlinear elliptic problem, variable exponents, entropy solution, Neumannboundary conditions, Radon measure