Détails Publication
Local Entropy Solution of a Convection-Diffusion Type Integro-Differential Equation,
Discipline: Mathématiques
Auteur(s): Mohamed Bance and Safimba Soma
Auteur(s) tagués:
Renseignée par : SOMA Safimba
Résumé
In this work, we prove existence local entropy solution of a convection-diffusion type integro-differential equation
∂t k ∗( j(v)−j(v0)) −∇· a(x,∇ϕ(v)) + F(ϕ(v))= f
in QT := (0,T) ×Ω with Dirichlet boundary condition v(0,
·)= v0 in Ω and L1-data f ∈L1((0,T) ×Ω), j(v0) ∈L1(Ω). To
that end, regularising the data by L∞-functions, using the existence result of entropy solution for these more approximate
data and a comparison and diagonal principle of the regularised entropy solution, we prove the existence of an local
entropy solution.
Mots-clés
fractional time derivative, Nonlinear Volterra equation, Doubly nonlinear, Entropy solution