Détails Publication
STRUCTURAL STABILITY OF P(X)-LAPLACIAN KIND PROBLEMS WITH MAXIMAL MONOTONE GRAPHS AND ROBIN TYPE BOUNDARY CONDITION. DISCUSS,
Discipline: Mathématiques
Auteur(s): K. Kansié, S. Ouaro
Auteur(s) tagués:
OUARO Stanislas
Renseignée par : OUARO Stanislas
Résumé
In this work, we study the convergence of a sequence of solutions of degenerate elliptic inclusion problems with variable coercivity and growth exponents. The functional setting involves Lebesgue and Sobolev spaces with variable exponent which varies also with n.
Mots-clés
Generalized Lebesgue-Sobolev spaces, Leray-Lions operator, maximal mono- tone graph, bounded Radon diffuse measure, Renormalized solution, electrorheological and Thermorheological fluids, Continuous dependence, Young measures.