Détails Publication
The obstacle problem associated with nonlinear elliptic equations in generalized Sobolev spaces,
Discipline: Mathématiques
Auteur(s): E. Azroul, M.B. Benboubker, S. Ouaro
Auteur(s) tagués:
OUARO Stanislas
Renseignée par : OUARO Stanislas
Résumé
This paper is devoted to the study of the following obstacle problem
−div(a(x,u,∇u))+g(x,u,∇u)=f in Ω,(1)
where Ω is an open bounded domain of ℝN(N≥2),a:Ω×ℝ×ℝN→ℝN is a Carathéodory function satisfying some growth, monotonicity and coerciveness conditions.
Under some suitable conditions on the function g and if f∈L1Ω, the authors prove the existence of entropy solutions to the problem (1) in the framework of generalized Soblev spaces with variable exponents using approximation and penalization methods.
Mots-clés
generalized Sobolev spaces; boundary value problems; truncations; penalized equations