Publications (392)
ARTICLE
SPATIO-TEMPORAL MATHEMATICAL MODELING OF INFECTIOUS DISEASES WITH CROSS DIFFUSION EFFECTS
SAFIMBA SOMA , SIAKA KAMBELE and ABOUDRAMANE GUIRO
In this paper, we study analytically a class of nonlinear parabolic reaction- diffusion systems modeling the spread of infectious diseases with cross- diffusion terms. This model is governed by an S-I-R type system. First, we
prove the global existence of weak solution to this class of system by means of an approximation process, the Faedo-Ga(...)
Keywords and phrases: infectious diseases, S-I-R model, cross-diffusion system, weak solutions, Faedo-Galerkin.
ARTICLE
THE EXISTENCE OF THREE POSITIVE SOLUTIONS OF NONHOMOGENEOUS SINGULAR KIRCHHOFF PROBLEMS
Rabo Noufou, Ouaro Stanislas
In the present paper, we establish two results of the existence of three solutions for a quasilinear problem involving singular (of the type u−δ) and non- local terms. The first concern the case where δ 0 in the singular term whereas the second present a strongly-singular nonlinearity (δ 1)
Mots clés non renseignés
ARTICLE
C^n-pseudo almost periodic solutions under the light of measure theory
MICAILOU NAPO AND ISSA ZABSONRE
The aim of this work is study some properties and the existence of solution of some C^npseudo almost periodic solutions of class r in a Banach space when the delay is distributed using the variation of constants formula and the spectral decomposition of the phase space.
measure theory, C^n--pseudo almost periodic function, delay differential equations
ARTICLE
Nonlinear problem having natural growth term and measure data
Konaté Ibrahime, Idrissa Ibrango, Ouaro Stanislas
The aim of this paper is to study the existence of solutions of multi- valued nonlinear elliptic problems involving the natural growth term, measure data and the general p(.)-Leray-Lions type operator. Using a decomposition of Radon diffuse measure due to Nyanquini et al.(see [26]) and approximation method, we construct an approximate problem(...)
Mots clés non renseignés
ARTICLE
Pseudo lmost periodic solutions of infinite class in the α-norm under the light of measure theory
DJENDODE MBAINADJI, DJOKATA VOTSIA AND ISSA ZABSONRE
The aim of this work is to study weighted pseudo almost periodic functions with infinite delay via measure theory. Using the Banach fixed point theorem and the techniques of fractional powers of an operator, we establish the existence and uniqueness of pseudo almost periodic solutions in the alpha-norm of the infinite class for some functiona(...)
Mots clés non renseignés
ARTICLE
ASYMPTOTIC EXPANSIONS FOR ELLIPTIC BOUNDARY VALUE PROBLEMS
KABORE Bruno, BELLA Boureima, LY Ibrahim
We propose an asymptotic solution related to a Cauchy problem for an elliptic
equation or system with data on a part of the boundary within solving operators
of Zaremba type mixed boundary problems.
Cauchy problem, variational problems
ARTICLE
On the multiplicity of solutions of a discrete Robin problem with variable exponents
Moussa Brahim, Nyanquini Ismaël, Ouaro Stanislas
In this paper, we prove the existence and multiplicity of solutions of a discrete Robin problem with variable exponents in a T-dimensional Banach space. The proofs of our main results are based on variational methods
Mots clés non renseignés
ARTICLE
STRUCTURAL STABILITY OF p(x)-LAPLACIAN KIND PROBLEMS WITH MAXIMAL MONOTONE GRAPHS AND NEUMANN TYPE BOUNDARY CONDITION
Kansié Kpè, Ouaro Stanislas
In this work, we study the convergence of a sequence of solutions of degenerate elliptic problems with variable coercivity and growth exponents. The functional setting involves Lebesgue and Sobolev spaces with variable ex- ponent which varies also with n
Mots clés non renseignés
ARTICLE
Resolution of the Standard Telegraph Equation by the Laplace-Adomian Method
MINOUNGOU Youssouf, BAGAYOGO Moussa ,PARE Youssouf
In this paper, we resarch the solution of the standard telegraph equation by the Laplace-Adomian method.
The Laplace-Adomian method is based on the combination of Laplace transform and the Adomian
decompositionnal method.
Telegraph equation, Laplace transform, ADM method
ARTICLE
On a Compound Poisson Risk Model Perturbed by Brownian Motion with Variable Premium and Tail Dependence between Claims Amounts and Inter-Claim Time
Delwendé Abdoul-Kabir Kafando, Kiswendsida Mahamoudou Ouedraogo, Pierre Clovis Nitiema
Cet article examine un modèle de risque de Poisson composé perturbé par un mouvement brownien avec un prime variable et une dépendance entre les montants des réclamations et les temps entre les réclamations via la copule de Spearman. Le modèle présente deux classes de preneurs de police ayant des montants de réclamation différents, ce qui a de(...)
Gerber-Shiu Function, Copula, Integro-Differential Equation, Laplace Transform, Brownian Motion
ARTICLE
Existence and regularity of solutions in α-norm for some second order partial neutral functional differential equations with finite delay in Banach spaces
DJENDODE MBAINADJI, AL-HASSEM NAYAM AND ISSA ZABSONRE
In this paper, we investigate the regularity and existence of solutions in the α-norm for some second order partial
neutral functional differential equations with finite delay in Banach spaces. To do this, we use the cosine families theory and Schauder’s fixed point theorem to establish the existence of solutions and then we give some suffici(...)
Mots clés non renseignés
ARTICLE
MULTIPLICITY OF HETEROCLINIC SOLUTIONS FOR THE DISCRETE p(k)-LAPLACE KIRCHHOFF TYPE EQUATIONS WITH A PARAMETER
Moussa Brahim, Nyanquini Ismaël, Ouaro Stanislas
In this paper, we prove the existence of at least one and at least two nontrivial heteroclinic solutions for the discrete p(k)-Laplace Kirchhoff type equations depending on a parameter. The proof of our main result is based on a local minimum theorem for differentiable functionals due to Ricceri and on the mountain pass theorem of P. Pucci and(...)
Mots clés non renseignés
ARTICLE
On the optimal dividend strategy for an insurance company in a compound Poisson risk model with dependence between claim amounts and time between claims
Kiswendsida Mahamoudou Ouedraogo, Delwendé Abdoul-Kabir Kafando, François Xavier Ouedraogo, Pierre Clovis Nitiema
Cet article étend le modèle de risque de Poisson composé avec une stratégie de paiement de dividendes à seuil variable et une dépendance entre les réclamations et les temps entre les réclamations, modélisée via la copule de Spearman. L'objectif est d'établir la probabilité ultime de ruine dans ce cadre. L'article passe en revue la littérature(...)
Gerber-Shiu Function, Copula, Integro-Differential Equation, Ruin Probability
ARTICLE
Improving Risk Assessment and Pricing with Dividend Barriers and Dependence Modelling: An Extension of the Cramer-Lundberg Model with Spearman Copulas
: Kiswendsida Mahamoudou Ouedraogo, Delwendé Abdoul-Kabir Kafando, Frédéric Bere, Pierre Clovis Nitiema
Cet article présente une extension du modèle de risque de Poisson composé, intégrant une stratégie de paiement de dividendes avec une barrière constante. Le modèle inclut une dépendance entre les montants des réclamations et les intervalles entre réclamations, modélisée à l'aide de la copule de Spearman. Les résultats montrent que la dépendanc(...)
Gerber-Shiu Functions, Dependency, Integro-differential Equation, Laplace Transformation, Probability of Ruin
ARTICLE
NUMERICAL RESOLUTION OF THE BIOLOGICAL POPULATION MODEL BY THE SBA METHOD
Bamogo Hamadou, Francis Bassono, Traoré André
We solve a population dynamics model applied to the case of the biological population with non-linear partial differential parabolic equations and illustrate the method by consirering two examples.
biological population, fractional equation, SOME blaise ABBO, method, fractional partial differential equations